III Geometric group theory – Example Sheet 1

Lent 2024

hjrw2@cam.ac.uk

The notation [x, y] denotes the commutator $xyx^{-1}y^{-1}$.

- 1. Let m, n be non-zero integers. The (m, n)-Baumslag-Solitar group BS(m, n) has presentation $\langle a, b | ba^m b^{-1} a^{-n} \rangle$. Identify the presentation complexes of BS(1, 1) and BS(1, -1) as well-known spaces.
- 2. Consider $G_n = \langle x, y, z \mid x^2 = y^3 = z, (xy)^{6n+5} = z^{5n+4} \rangle$ for $n \ge 0$, the fundamental groups of Dehn's homology spheres discussed in lectures.
 - (a) Show that z is central in G_n , for all n.
 - (b) Show that G_0 surjects the alternating group A_5 .
- 3. Consider $BS(1,2) = \langle a, b | bab^{-1}a^{-2} \rangle$. For each n, exhibit a van Kampen diagram for the word

$$w_n = b^n a b^{-n} a b^n a^{-1} b^{-n} a^{-1}$$

Comment on the areas of these van Kampen diagrams.

- 4. Consider the presentation $\mathbb{Z}^2 \cong \langle a, b \mid [a, b] \rangle$, and the word $w_n = [a^n, b^n]$ for $n \ge 1$. Show that the area of w_n is n^2 . [Hint: The presentation complex for \mathbb{Z}^2 induces a cell structure on the universal cover $\widetilde{X} \cong \mathbb{R}^2$ of the presentation complex. Consider the cellular homology of \widetilde{X} .]
- 5. The subgroup of the isometry group of \mathbb{R} that preserves the integers \mathbb{Z} setwise is called the *infinite dihedral group* and is denoted by D_{∞} . Let r denote reflection in 0, let s denote reflection in 1/2, and let t denote translation by 1.
 - (a) Show that $A = \{r, s\}$ and $B = \{r, t\}$ both generate D_{∞} .
 - (b) By considering a point $x \in \mathbb{R}$ with trivial stabiliser, draw Cayley graphs for D_{∞} with respect to both A and B.
- 6. Let $G = \langle A | R \rangle$, with A a finite generating set. For any $n \ge 0$ let B_n denote the closed ball around 1 in $\operatorname{Cay}_A(G)$ of radius n. Prove that the word problem is solvable in $\langle A | R \rangle$ if and only if there is an algorithm that takes as input an integer n and outputs the finite graph B_n .
- 7. Consider the presentation complex X of a group $G = \langle A | R \rangle$. Let Y be the covering space of the 1-skeleton $X_{(1)}$ that corresponds to $\langle\!\langle R \rangle\!\rangle$ under the Galois correspondence for covering spaces. Prove that Y is isomorphic to $\operatorname{Cay}_A(G)$.
- 8. Let F_n denote the free group of rank n, i.e. $F(\{a_1, \ldots, a_n\})$. Prove that F_2 contains subgroups isomorphic to F_n for all $n \ge 2$. Does it contain free subgroups of infinite rank?
- 9. (a) Let Y be a wedge of 4 circles. Draw the covering space Y' corresponding to the kernel of the homomorphism $\pi_1(Y) \to \mathbb{Z}/2\mathbb{Z}$ that sends every generator to 1. Write down an explicit injective homomorphism $F_7 \to F_4$. What is the index of the image of F_7 in F_4 ?
 - (b) Let Σ_g denote the surface of genus g. Consider the presentation

$$\pi_1(\Sigma_2) \cong \langle a_1, a_2, b_1, b_2 | [a_1, b_1] [a_2, b_2] \rangle$$

and show that there is a homomorphism $f: \pi_1(\Sigma_2) \to \mathbb{Z}/2\mathbb{Z}$ with $f(a_i) = f(b_i) = 1$. Let X' be the covering space of Σ_2 corresponding to ker f. Draw a schematic picture of a natural cell structure on X'. Prove that X' is homeomorphic to Σ_3 [*Hint: consider Euler characteristic*]. Write down a presentation of $\pi_1(\Sigma_3)$ with one relation, and an explicit injective homomorphism $\pi_1(\Sigma_3) \to \pi_1(\Sigma_2)$.

- 10. Let X be a topological space. Assuming that X is compact, locally compact, and has a universal cover, show that $\pi_1(X)$ is finitely generated.
- 11. Prove that quasi-isometry defines an equivalence relation on metric spaces.
- 12. Show that $d(x, y) = \sqrt{|x y|}$ defines a metric on \mathbb{R} . Deduce that the hypothesis that X is geodesic cannot be dropped from the Schwarz-Milnor lemma.